• About
  • Subscribe
  • Contact
Thursday, May 8, 2025
    Login
  • Management Leadership
    • Growth Strategies
    • Finance
    • Operations
    • Sales and Marketing
    • Careers
  • Technology
    • Infrastructure and Platforms
    • Business Applications and Databases
    • Big Data, Analytics and Intelligence
    • Security
  • Industry Verticals
    • Finance and Insurance
    • Manufacturing
    • Logistics and Transportation
    • Retail and Wholesale
    • Hospitality and Tourism
    • Government and Public Services
    • Utilities
    • Media and Telecommunications
  • Resources
    • Whitepapers
    • PodChats
    • Videos
  • Events
No Result
View All Result
  • Management Leadership
    • Growth Strategies
    • Finance
    • Operations
    • Sales and Marketing
    • Careers
  • Technology
    • Infrastructure and Platforms
    • Business Applications and Databases
    • Big Data, Analytics and Intelligence
    • Security
  • Industry Verticals
    • Finance and Insurance
    • Manufacturing
    • Logistics and Transportation
    • Retail and Wholesale
    • Hospitality and Tourism
    • Government and Public Services
    • Utilities
    • Media and Telecommunications
  • Resources
    • Whitepapers
    • PodChats
    • Videos
  • Events
No Result
View All Result
No Result
View All Result
Home Technology Big Data, Analytics & Intelligence

Achieving Explainable AI in data analytics using OLAP and Graph

Sajal Rastogi by Sajal Rastogi
October 24, 2023
Photo by Mikael Blomkvist: https://www.pexels.com/photo/person-holding-white-ipad-on-brown-wooden-table-6476589/

Photo by Mikael Blomkvist: https://www.pexels.com/photo/person-holding-white-ipad-on-brown-wooden-table-6476589/

Traditional online analytical processing (OLAP) systems struggle to keep pace with the velocity, variety and volume of data that modern organisations generate and analyse every day. Initially designed to work with structured data, the present semi-structured or unstructured data formats commonly encountered in big data environments overwhelm conventional OLAP architectures.

It complicates the data integration and modelling process, restricting the ability to gain holistic intelligence from diverse data types.

As data demands change and volumes grow exponentially, traditional OLAP systems are also strained for performance and scalability. Additionally, they are not designed to natively support the integration of machine learning and AI models for advanced predictive and prescriptive analytics. This slows down the organisations in harnessing the full potential of their data.

The limitations of traditional OLAP systems in handling the challenges posed by modern data stacks, extend beyond technical constraints. These limitations give rise to a profound need for Explainable AI (XAI) solutions, as organisations strive not only to extract valuable insights but also to generate trust in those insights.

As decision-making increasingly becomes data-driven, the “black box” nature of traditional OLAP leads to scepticism and hesitation within organisations as the process fails to provide transparent explanations for the patterns and insights it uncovers.

Explainable AI provides interpretable and human-understandable explanations for the results it produces. XAI helps answer critical questions such as “What are the implications of a particular trend” or “How did we arrive at this result” and “What factors are contributing to it?”

These explanations enhance trust in the reports and enable domain experts to validate and fine-tune AI models, improving their overall effectiveness.

Augmentation of OLAP with a graph-based approach while supporting XAI combines the strengths of traditional OLAP with the versatility of graph databases and algorithms. Graph structures are designed to model complex relationships and dependencies within data with a visual map that is easy to comprehend.

With an augmented architecture, intricate connections between data points open for exploration, revealing a deeper level of patterns and insights that traditional OLAP systems might overlook.

This powerful combination of OLAP and graphical capability enhances the depth and breadth of analytics. It retains its ability to handle structured data efficiently, while also adding the ability to work with semi-structured and unstructured data formats which are prevalent in modern data environments.

A synergy of OLAP, graph-based methods and XAI fosters a pioneering step towards more informed, trustworthy and effective data analytics.

Next, let’s look at the application of this unique stack in two representative industries – Healthcare and Financial Services.

Healthcare Applications

The sheer volume of data that a hospital network needs to analyse for intelligence to guide treatment plans or allocate resources poses significant challenges. Integrating graph technology with their OLAP architecture can unlock deeper insights for them.

Graphs can be utilised to represent intricate relationships between patients, medical procedures, medications, and healthcare providers; constructing a holistic view of a patient's healthcare journey.

Here are some areas that this technology stack can be of significant advantage:

Patient journey mapping: Graph algorithms can help visualise and analyse the entire patient journey from initial diagnosis to treatments, surgeries, and follow-up care. This helps in generating personalised patient care plans that are based on histories, outcomes, and preferences.

Referral networks and specialist collaborations: Graphs can reveal networks of healthcare providers, showcasing referral patterns and collaborations between specialists. This insight can be used to foster timely interventions, effective teamwork, and coordinated patient care.

Clinical trial matching: Matching eligible patients with ongoing clinical trials based on their medical history, demographics and treatment preferences increases the likelihood of successful trial participation and accelerates medical research.

Medication adherence and interaction analysis: Modelling patient-medication relationships with graph algorithms identifies adherence patterns and tailored treatment plans.

Resource optimisation: Graphs reveal hospital resource utilisation enabling efficient scheduling, resource allocation and operational efficiency improvements.

Explainable treatment plans: The graph-based approach allows for transparent and comprehensible explanations for treatment plans enhancing patient trust and understanding. This may include key medical factors and relationships that influenced the recommended course of action.

Overall, graph-based approach with XAI helps medical practitioners to enhance patient trust and confidence in the healthcare provider's expertise- resulting in better outcomes.

Financial Services

When financial institutes seamlessly integrate graph technology into their OLAP framework, they open the door to a wealth of insights. Graphs become instrumental in modelling intricate relationships among various entities such as customers, accounts, loans, and transactions.

A comprehensive view of a customer's financial history goes well beyond the capabilities of traditional OLAP systems.

Taking risk assessment as an example, OLAP systems often struggle to analyse the multiple interconnected data points involved in evaluating a borrower's creditworthiness. However, the fusion of OLAP and graph technology delivers superior credit risk insights instantly.

Let us consider more application areas within the financial services domain:

Identifying financial networks: Graph algorithms uncover hidden connections among customers, accounts, and transactions. This reveals insights like clusters of accounts associated with specific industries or customers frequently engaging in joint transactions.

Detecting anomalies and fraud: Graph-based anomaly detection raises red flags for unusual patterns or suspicious activities such as unexpected large transactions from accounts that have no prior history of such behaviour.

Assessing risk profiles: Banks gain a nuanced understanding of customer risk profiles by analysing relationships and interactions with graph technology. This includes evaluating income source stability, assessing asset diversity, and spotting potential risk indicators.

Portfolio diversification: Analytical insights using graphs aid in optimising investment portfolios by highlighting correlations between different asset classes and diversification opportunities to manage risk.

Credit scoring enhancement: Graph algorithms consider not just individual credit scores but also the influence of a customer's network. For instance, having financially stable connections can positively impact a customer's creditworthiness.

Explainable loan approvals: When processing loan applications, the graphical approach provides a clear rationale for decisions, highlighting key factors and relationships that influenced the outcome.

Conclusion

The challenges posed by traditional OLAP systems in the face of modern data stacks, along with the need for explainable AI, have paved the way for an innovative solution – the fusion of OLAP with a graph-based approach while embracing XAI principles. This unique combination not only addresses the limitations of traditional OLAP but also enhances the scope of data analytics.

As data continues to be the driving force behind decision-making in various industries, the tech stack comprising OLAP, graph-based techniques, and XAI holds the potential to redefine how organisations leverage their data.

It enhances not only their analytical capabilities but also their trust in the insights they derive. This promises to be the future of data analytics – one that is both powerful and explainable, leading to better outcomes and more informed decision-making.

Related:  HK’s 8 virtual banks join in the foray to tap HK$152 billion market
Tags: explainable AIKyvos InsightsOLAPprescriptive analytics
Sajal Rastogi

Sajal Rastogi

Sanjal Rastogi, the visionary Director of Technology at Kyvos Insights, a trailblazing force in the realm of data analytics and business intelligence. With an illustrious tenure since the company's inception, Rastogi brings forth a profound reservoir of expertise, spanning an impressive 19-year odyssey in crafting fortified and expansively scalable distributed Business Intelligence Products. At the helm of the enterprise's technological evolution, he orchestrates the symphony of development, steering the engineering team towards new heights of innovation, and charting a visionary course for the product roadmap. Notably, Rastogi wears the mantle of the distributed analytics engine, sculpting the backbone of Kyvos' platform with unparalleled finesse. His indomitable zeal for technology, coupled with an unwavering dedication to excellence, stands as the cornerstone of Kyvos Insights' ascendency in the dynamic landscape of analytics.

No Result
View All Result

Recent Posts

  • Agentic AI-powered AppSec platform launched for the AI era
  • IDC forecasts GenAI alone will grow at a 59.2% CAGR
  • Dataiku brings new AI capabilities to create and control AI agents
  • Microsoft reveals the rise of a new kind of organisation in the AI era
  • St Luke’s ElderCare enhances data security and user experience with Juniper

Live Poll

Categories

  • Big Data, Analytics & Intelligence
  • Business Applications & Databases
  • Business-IT Alignment
  • Careers
  • Case Studies
  • CISO
  • CISO strategies
  • Cloud, Virtualization, Operating Environments and Middleware
  • Computer, Storage, Networks, Connectivity
  • Corporate Social Responsibility
  • Customer Experience / Engagement
  • Cyber risk management
  • Cyberattacks and data breaches
  • Cybersecurity careers
  • Cybersecurity operations
  • Education
  • Education
  • Finance
  • Finance & Insurance
  • FutureCISO
  • General
  • Governance, Risk and Compliance
  • Government and Public Services
  • Growth Strategies
  • Hospitality & Tourism
  • HR, education and Training
  • Industry Verticals
  • Infrastructure & Platforms
  • Insider threats
  • Latest Stories
  • Logistics & Transportation
  • Management Leadership
  • Manufacturing
  • Media and Telecommunications
  • News Stories
  • Operations
  • Opinion
  • Opinions
  • People
  • Process
  • Remote work
  • Retail & Wholesale
  • Sales & Marketing
  • Security
  • Tactics and Strategies
  • Technology
  • Utilities
  • Videos
  • Vulnerabilities and threats
  • White Papers

Strategic Insights for Chief Information Officers

FutureCIO is about enabling the CIO, his team, the leadership and the enterprise through shared expertise, know-how and experience - through a community of shared interests and goals. It is also about discovering unknown best practices that will help realize new business models.

Quick Links

  • Videos
  • Resources
  • Subscribe
  • Contact

Cxociety Media Brands

  • FutureIoT
  • FutureCFO
  • FutureCIO

Categories

  • Privacy Policy
  • Terms of Use
  • Cookie Policy

Copyright © 2022 Cxociety Pte Ltd | Designed by Pixl

Login to your account below

or

Not a member yet? Register here

Forgotten Password?

Fill the forms bellow to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Management Leadership
    • Growth Strategies
    • Finance
    • Operations
    • Sales and Marketing
    • Careers
  • Technology
    • Infrastructure and Platforms
    • Business Applications and Databases
    • Big Data, Analytics and Intelligence
    • Security
  • Industry Verticals
    • Finance and Insurance
    • Manufacturing
    • Logistics and Transportation
    • Retail and Wholesale
    • Hospitality and Tourism
    • Government and Public Services
    • Utilities
    • Media and Telecommunications
  • Resources
    • Whitepapers
    • PodChats
    • Videos
  • Events
Login

Copyright © 2022 Cxociety Pte Ltd | Designed by Pixl

Subscribe