• About
  • Subscribe
  • Contact
Thursday, May 8, 2025
    Login
  • Management Leadership
    • Growth Strategies
    • Finance
    • Operations
    • Sales and Marketing
    • Careers
  • Technology
    • Infrastructure and Platforms
    • Business Applications and Databases
    • Big Data, Analytics and Intelligence
    • Security
  • Industry Verticals
    • Finance and Insurance
    • Manufacturing
    • Logistics and Transportation
    • Retail and Wholesale
    • Hospitality and Tourism
    • Government and Public Services
    • Utilities
    • Media and Telecommunications
  • Resources
    • Whitepapers
    • PodChats
    • Videos
  • Events
No Result
View All Result
  • Management Leadership
    • Growth Strategies
    • Finance
    • Operations
    • Sales and Marketing
    • Careers
  • Technology
    • Infrastructure and Platforms
    • Business Applications and Databases
    • Big Data, Analytics and Intelligence
    • Security
  • Industry Verticals
    • Finance and Insurance
    • Manufacturing
    • Logistics and Transportation
    • Retail and Wholesale
    • Hospitality and Tourism
    • Government and Public Services
    • Utilities
    • Media and Telecommunications
  • Resources
    • Whitepapers
    • PodChats
    • Videos
  • Events
No Result
View All Result
No Result
View All Result
Home Industry Verticals Education

NUS develops tools for checking compromised AI systems

FutureCIO Editors by FutureCIO Editors
November 19, 2020
Assistant Professor Reza Shokri

Assistant Professor Reza Shokri

Many smartphone applications, such as speech-to-text program and Google Assistant, are powered by Artificial Intelligence (AI). Companies also use AI to improve marketing strategies, recommend products and services to users, or even generate predictions about possible health risks for patients.

For AI systems to provide such insights, they need to be trained with relevant data such as a person’s purchasing habits or medical records, which can contain sensitive information about an individual. Once an AI model has been trained, it does not retain any of the original training data. This ensures that even if hackers pry open the internal workings of these AI programs, they could not harvest any sensitive information.

In recent years, security and privacy researchers have shown that AI models are vulnerable to inference attacks that enable hackers to extract sensitive information about training data. The attack involves hackers repeatedly asking the AI service to generate information and analysing the data for a pattern. Once they have determined the pattern, they can deduce if a specific type of data was used for training the AI program. Using these attacks, hackers can even reconstruct the original dataset that was most likely used to train the AI engine.

Such attacks are becoming a concern for many organisations globally. For instance, in 2009 similar attacks took place against the National Institutes of Health (NIH) in the United States, and NIH had to change their access policies to sensitive medical data.

Assistant Professor Reza Shokri from the National University of Singapore’s School of Computing (NUS Computing) explained, “Inference attacks are difficult to detect as the system just assumes the hacker is a regular user while supplying information. As such, companies currently have no way to know if their AI services are at risk because there are currently no full-fledged tools readily available.”

Machine Learning Privacy Meter to assess risk of attacks

To address this problem, Asst Prof Shokri and his team have developed a full-fledged open-source tool that can help companies determine if their AI services are vulnerable to such inference attacks.

The analysis, based on what is known as Membership Inference Attacks, aims at determining if a particular data record was part of the model’s training data. By simulating such attacks, the privacy analysis algorithm can quantify how much the model leaks about individual data records in its training set.

This reflects the risk of different attacks that try to reconstruct the dataset completely or partially. It generates extensive reports that, in particular, highlight the vulnerable areas in the training data that were used.

By analysing the result of the privacy analysis, the tool can provide a scorecard which details how accurately the attackers could identify the original datasets used for training. The scorecards can help organisations to identify weak spots in their datasets, and show the results of possible techniques that they can adopt to pre-emptively mitigate a possible Membership Inference Attack.

The NUS team coined this tool “Machine Learning Privacy Meter” (ML Privacy Meter), and the innovative breakthrough is the development of a standardised general attack formula. This general attack formula provides a framework for their AI algorithm properly test and quantifies various types of membership inference attacks.

The tool is based on the research led by the NUS team in the last three years. Before the development of this method, there was no standardised method to properly test and quantify the privacy risks of machine learning algorithms, which made it difficult to provide a tangible analysis.

“When building AI systems using sensitive data, organisations should ensure that the data processed in such systems are adequately protected. Our tool can help organisations perform internal privacy risk analysis or audits before deploying an AI system. Also, data protection regulations such as the General Data Protection Regulation mandate the need to assess the privacy risks to data when using machine learning. Our tool can aid companies in achieving regulatory compliance by generating reports for Data Protection Impact Assessments,” explained Asst Prof Shokri.

Related:  AI can predict spike of COVID cases in hospitals
Tags: Artificial IntelligenceMembership Inference AttacksNational University of Singapore
FutureCIO Editors

FutureCIO Editors

No Result
View All Result

Recent Posts

  • Agentic AI-powered AppSec platform launched for the AI era
  • IDC forecasts GenAI alone will grow at a 59.2% CAGR
  • Dataiku brings new AI capabilities to create and control AI agents
  • Microsoft reveals the rise of a new kind of organisation in the AI era
  • St Luke’s ElderCare enhances data security and user experience with Juniper

Live Poll

Categories

  • Big Data, Analytics & Intelligence
  • Business Applications & Databases
  • Business-IT Alignment
  • Careers
  • Case Studies
  • CISO
  • CISO strategies
  • Cloud, Virtualization, Operating Environments and Middleware
  • Computer, Storage, Networks, Connectivity
  • Corporate Social Responsibility
  • Customer Experience / Engagement
  • Cyber risk management
  • Cyberattacks and data breaches
  • Cybersecurity careers
  • Cybersecurity operations
  • Education
  • Education
  • Finance
  • Finance & Insurance
  • FutureCISO
  • General
  • Governance, Risk and Compliance
  • Government and Public Services
  • Growth Strategies
  • Hospitality & Tourism
  • HR, education and Training
  • Industry Verticals
  • Infrastructure & Platforms
  • Insider threats
  • Latest Stories
  • Logistics & Transportation
  • Management Leadership
  • Manufacturing
  • Media and Telecommunications
  • News Stories
  • Operations
  • Opinion
  • Opinions
  • People
  • Process
  • Remote work
  • Retail & Wholesale
  • Sales & Marketing
  • Security
  • Tactics and Strategies
  • Technology
  • Utilities
  • Videos
  • Vulnerabilities and threats
  • White Papers

Strategic Insights for Chief Information Officers

FutureCIO is about enabling the CIO, his team, the leadership and the enterprise through shared expertise, know-how and experience - through a community of shared interests and goals. It is also about discovering unknown best practices that will help realize new business models.

Quick Links

  • Videos
  • Resources
  • Subscribe
  • Contact

Cxociety Media Brands

  • FutureIoT
  • FutureCFO
  • FutureCIO

Categories

  • Privacy Policy
  • Terms of Use
  • Cookie Policy

Copyright © 2022 Cxociety Pte Ltd | Designed by Pixl

Login to your account below

or

Not a member yet? Register here

Forgotten Password?

Fill the forms bellow to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Management Leadership
    • Growth Strategies
    • Finance
    • Operations
    • Sales and Marketing
    • Careers
  • Technology
    • Infrastructure and Platforms
    • Business Applications and Databases
    • Big Data, Analytics and Intelligence
    • Security
  • Industry Verticals
    • Finance and Insurance
    • Manufacturing
    • Logistics and Transportation
    • Retail and Wholesale
    • Hospitality and Tourism
    • Government and Public Services
    • Utilities
    • Media and Telecommunications
  • Resources
    • Whitepapers
    • PodChats
    • Videos
  • Events
Login

Copyright © 2022 Cxociety Pte Ltd | Designed by Pixl

Subscribe